児童虐待の専門職が 心理学や統計学を語るブログ

心理学や、心理学研究における統計解析の話など

延長因子分析(extention factor analysis)という技法

因子分析には様々な技法があります。

1個人に連続してデータをとって時系列データっぽいものを対象としたp技法因子分析とか、サンプルが集まらない際の苦肉の策として私個人としても用いたことがある技法もあったりしますが、

今回は「延長因子分析(extention factor analysis)」のお話をしたいと思います。

大体が『延長因子分析の方法論― 変数と因子との相関係数として定義される因子構造を用いて―』清水和秋(2012),関西大学心理学研究,2012,第3号 からの情報なので、ここを見た方が正確ではあるんですが、せっかく論文を読んで学んだことのまとめということで。

そもそも延長因子分析って、実務的には追加した変数をパス関係に置くことによる測定モデルの意味とか、イマイチ腑に落ちない部分もある(理解不足)ので、延長因子分析を用いるメリットデメリットなどをどうぞアホな私に教えて偉い人。

我が恩師の清水先生の論文は無駄がなく簡潔なので、自分のようなアホにはようわからんことが多いのです。

 

延長因子分析って、元々行われた因子分析結果があったとして、そこに新しい変数を加え、その新しく加えた変数の因子パターンをどうやって分析するか~っていうものなんです。

その分析の方法としていくつか方法論が提案されているんですが、

2000年前後から広まってきた構造方程式モデリング(=SEM)を用いるとかなり簡便に延長因子分析が可能となる、

そんな感じでよろしいのでしょうか偉い人。

 

因子分析の基本モデルを行列で表すところから始めます。

まず、あるN人の被験者について、n変数の測定を行い、m 個の因子を抽出することができたものとします。次に、この観測変数の標準得点行列をZ(N×n)とすると因子分析のモデルは次のように表すことができます。

  • (1)Z = FV’fp+ UD

F は(N×m)次の因子得点行列、

Vfpは(n×m)次の因子パターン行列、

(1)式のaj1~ajm を第j 番目の変数の因子パターンm 個の値とすると、

この行列の要素(n×m)はn 個の変数の因子パターンからなります。

この共通因子空間とは独立した独自性に関するものが(N×n)次の独自性得点行列U と、独自性を対角項にもつ(n×n)次の対角行列Dになります。

 

R を(n×n)次の変数間の相関行列とすると、次のように展開することができます。

  • (2)R =(1/N)*Z’ Z

        = VfpCfVfp +D2

Cf は(m×m)次の因子間相関行列です。

(2)式は、因子得点間の相関行列でもあります。

Vfp は初期の因子解を回転した結果の因子パターン行列です。

これに対して、変数と因子との相関係数が因子構造であり、この行列Vfs(n×m)(=因子構造行列)は、次のように計算することができます。

・(3) Vfs =(1/N) Z'F

 

因子パターン行列と因子構造行列との関係は次のように表すことができます。

・(4)Vfs = Vfp C ⇒ 因子構造行列=因子パターン行列×因子間行列

 

ここでは、この得点の推定値Fˆ を算出したものとします。そして、同じN 人を対象としてi 個の変数を追加することができたものとします。

この標準得点行列をiZ(N×i)と表して、上の因子得点との相関係数を(3)式のように求めてみると以下のようになります。

・(5)iVfs =(1/N)Z Fˆ

 

この(5)式で得られた新しい変数の因子構造行列に(4)式のように因子間相関行列の逆行列を次のように掛けると

・(6) iVfp= iVfs C-1f

となりまして、新しく追加した変数の因子パターンの値iVfpを得ることができました。

すなわち、因子分析での対象ではなかった新たに加えられたi 個の変数をm 次元のn 変数から抽出された共通因子空間に布置させることができた、ということになります。

以上が、古典的な延長因子分析の考え方になります。

 

SEMによる方法 ※図は清水(2012)から引用

イメージとしては、以下の図のような感じです。追加変数を設定して、まとめてSEMによる分析を行います。

f:id:romancingsame:20190812221500p:plain

Fig.1 8 変数2 因子の測定モデルに3 つの変数を追加

標準化解:因子パターンp1 ~ p8、因子間相関

延長因子分析:因子と追加した変数との相関係数r1 ~ r3

 

図のr1 ~ r3 の因子と追加した変数との相関係数は、(5)式のiVfs(iの因子構造行列) に相当します。これらの値は、(6)式のように因子パターンへの変換が必要となります。

※直接iVfp (新しく追加した因子パターンの値)を推定するために測定モデルである因子からのパスとしてこれらの追加した変数を置くことも可能なように思えますが、このやり方では因子を構成する変数に変化を起こすことになるそうなので、ここでは追加した変数は相関関係としておいています。

 

SEM の方法からは、このように、因子得点と追加した変数との相関係数を直接的に計算することができ、この点が古典的な方法とは異なる点になります。適合度等の検定も可能となるので、延長因子分析についてはSEMを用いると便利なように思えます。

昔の偉い人は色々工夫をして繁雑な計算を行っていたのですが、複雑な計算を行わずに済むようなソフトを開発してくれた最近の偉い人のお陰で自分のようなアホに様々な恩恵があると思うと、今と昔の偉い人はすごいなと思います。

児童福祉司のつらさは数値化できるか!?福祉司はつらいよモデル

児童虐待対応の仕事、いわゆるケースワーカー(CW)の仕事は日々とても辛いものがあります。

でもどうして辛いんでしょうか。

仕事の内容の激しさももちろんありますが、その他のとてもシンプルな理由に、仕事の多さ、次々と終わらない担当の受理などがあります。

要するに、この前の仕事が終わっていない(すぐ終わるものでもないし)のに次々くる感じです。

これはもう誰でも嫌になっちゃいますよね。

そんなシンプルなつらさってどうやってモデルで表現するのでしょうか。

今回、色々と小難しいことは抜きにした「CW嫌々モデル」を考えてみました。

 

架空データとして、「嫌だなって気持ちを点数化したもの(高いほど嫌)」である嫌得点(iyapoint)と、仕事が増えた・殺害予告された・個人名で訴えると怒鳴られた・殴られた(どれも日々のあるあるだね!!)のイベントが発生したかを示す2値データ(ivent)が、日々の時系列データでどのように変化するかを見ていきます。

 

          day iyapoint ivent

1    2019/4/1        7     0

2    2019/4/2        7     0

3    2019/4/3        9     1

4    2019/4/4        8     0

5    2019/4/5        9     1

6    2019/4/6        9     0

7    2019/4/7        8     0

↑こんな感じのデータです。

 

早速モデルを考えていきます。

◆モデル1:トレンド+嫌イベントストレスモデル

1.放っておくと嫌々度は下がる;-Trend(負の傾きの直線をイメージしてください)2.定期的に負のイベントがある:CoefIvent*Iventt (トレンドの係数=一定)×嫌なイベントの有無

  1,2よりイベントの影響を含めたトレンド:δt=Trend+CoefIvent*Iventt

3.μt=μt-1+δt-1+wt, wt~(0,σ2w):μtはt時点の嫌々度の状態

4.μnoiset=μt+Vt:Yt,Vtは各々t時点の過程誤差と観測誤差

5.λt=exp(μt)

6.Yt~Poisson(λt)

嫌なイベントの発生はまれ(だといいなという想定)という前提で、ポアソン分布を使用。でも嫌々は得点化したから、ポアソンのような離散分布でなく連続データの分布にした方がよかったかなぁと今更ながら思った。

 

少し雑念が入りましたが、上記1~6を元に最初の数理モデルを組み、統計処理をしてみようと思います。

統計ソフト:R-3.5.2

使用パッケージ:Rstan他

連続データを用いた、状態空間モデルによるベイズ推定を行いました。

 

以下Stanコードを記します。

stancode <- "

data {

  int n;            // サンプルサイズ

  int ivent[n];      // 嫌イベントの有無

  int iyapoint[n];   // 嫌得点

}

parameters {

  real trend;            // 嫌得点減少トレンド

  real coef_ivent;       // 嫌イベント発生がトレンドに与える影響

  real mu_zero;          // 状態の初期値

  real mu[n];            // 状態の推定値

  real mu_noise[n];      // 観測誤差の入った状態の推定値

  real<lower=0> s_w;     // 過程誤差の分散

  real<lower=0> s_v;     // 観測誤差の分散

transformed parameters{

  real delta[n];    // イベントの影響が入ったトレンド

  real lambda[n];   // ポアソン分布の期待値

  for(i in 1:n){

    delta[i] = -trend + coef_ivent * ivent[i];

  }

  for(i in 1:n){

    lambda[i] = exp(mu_noise[i]);

  }

}

model {

  // 状態の初期値から最初の時点の状態が得られる

  mu[1] ~ normal(mu_zero, sqrt(s_w));   

  // 状態方程式に従い、状態が遷移する

  for (i in 2:n){

    mu[i] ~ normal(mu[i - 1] + delta[i - 1], sqrt(s_w));

  } 

  // 観測誤差が加わる

  for(i in 1:n){

    mu_noise[i] ~ normal(mu[i], sqrt(s_v));

  }

  //  ポアソン分布に従って観測値が得られる

  for(i in 1:n){

    iyapoint[i] ~ poisson(lambda[i]);

  }

generated quantities{ //新たにサンプリングする変数を作る

    vector[n] log_lik;

    for(i in 1:n){

    //モデル1の対数尤度

      log_lik[i] = poisson_lpmf(iyapoint[i] | lambda[i]);//ポアソンの場合、lpdfではなくてlpmfであることに注意。https://www.slideshare.net/simizu706/stan-64926504の42

  }

}

"

fit <- stan(model_code = stancode, iter = 8000, chains = 1, data = standata, seed=123)

f:id:romancingsame:20190715212623j:plain

 

◆モデル2:CW嫌イベント確率的ボラティリティ変動モデル

確率的ボラティリティモデルとは、金融界でよく使われるモデルです。ボラティリティ(分散的な)が常に一定であるランダムウォークとは異なり、ボラティリティ自体もランダムウォークするというモデルです。株価みたいに、上がる時はじわじわ上昇トレンドで上がるくせに、下がる時は理不尽にガタッとくる値動きをよく表現できているモデルだと思います。

 

何もなければ(ありえないけど)すこーしずつストレスが和らぐけど、ちょっとしたことで一気に限界突破する児童虐待の仕事と似てると思いませんか?

 

以下、モデル2のStanコード

stancode2 <- "

data {

        int n;

        real iyapoint[n];

    }

parameters {

        real h[n];

        real mu;

        real<lower=-0.999,upper=0.999> phi;//ボラティリティの持続性

        real<lower=0.0001> sigma;

model {

        h[1] ~ normal(mu,sigma/sqrt(1-phi*phi));

        iyapoint[1] ~ normal(0,exp(h[1]/2));

        for (i in 2:n){

           h[i] ~ normal*1;

        }

}

generated quantities{ //新たにサンプリングする変数を作る

    vector[n] log_lik;

    for(i in 1:n){

    //モデル2の対数尤度

      log_lik[i] = normal_lpdf(iyapoint[i] | 0,exp(h[i]/2));

   }

}

"

 fit2 <- stan(model_code = stancode2, iter = 8000, chains = 1, data = standata, seed=1234)

 

f:id:romancingsame:20190715212631j:plain

得点、ホワイトノイズショックのスケール、ボラティリティの持続性

そして、このモデル1とモデル2のどちらがデータに適合したモデルなのでしょうか。

適したモデルこそ、児童虐待CWの辛さをよく表現したモデルってことになります。

モデルの比較はWAICを使用します。

適合度比較では、構造方程式モデリングではAICとかGFIとかRMSEAとかがスタンダードですが、ベイズではWAICがよく使用されています。以下にRで実行する際のコードを示します。

 

log_lik1 <- extract_log_lik(fit)#waic用コードで計算したfit12の対数尤度の値を取り出す

waic1 <- waic(log_lik1)#変数名を付ける

print(waic1 , digits = 3)#waic1の結果表示

 

log_lik2 <- extract_log_lik(fit2)

waic2 <- waic(log_lik2)

print(waic2 , digits = 3)

 

compare(waic1,waic2)#waicの比較.昇順に並べ替える

 

 

print(waic1 , digits = 3)#waic1の結果表示

          Estimate     SE

elpd_waic  -198.555   1.014

p_waic        1.131     0.087

waic         397.111  2.028

 

log_lik2 <- extract_log_lik(fit2)

waic2 <- waic(log_lik2)

 

print(waic2 , digits = 3) #waic2の結果表示

          Estimate    SE

elpd_waic   -337.736   1.597

p_waic        0.161        0.013

waic            675.471    3.195

 

compare(waic1,waic2)#waicの比較

elpd_diff       se

-139.2          0.9

 

★結論:モデル1(トレンド+嫌イベントストレスモデル)のWAICの方が小さいため、予測の観点から良いモデルといえることが分かりました。

 

とはいえ、モデル2の確率的ボラティリティな感じも、日常業務である「落ち着いてきていけると思ったけど炎上してやっぱ無理」な感じをよく表現できていると思います。

確率的ボラティリティを用いた、より良いモデルに改良していけるのではないかと思います。今回のはシンプルでしたしね。

*1:1-phi)*mu+phi*h[i-1],sigma);

           iyapoint[i] ~ normal(0,exp(h[i]/2

Messerschmitt(メッサーシュミット)の腕時計

f:id:romancingsame:20190707222644j:plain

男の仕事には、相棒となる左腕が必要だー

我が敬愛する某H先生がなんとなく言ってそうな名言です。

男の左腕ーそう、そこにはエレガントでシンプルな腕時計。

大好きな横浜の大さん橋から徒歩数分、頑張ると1分くらいで到着可能なお店

BLAUBERG an der KÜSTEさんにて発見、一目惚れ。腕時計は既に持っていたため購入を躊躇するも、これ以上のものは出会えないんじゃないかと思い、ついに手に。

その名もMesserschmitt。

第二次世界大戦における初のジェット機(ME262)で空軍戦闘機(メッサーシュミット)の名を冠したドイツの時計ブランド。

メッサーシュミット が大空を羽ばたくイメージで設計されているとのこと。

これで自分もメッサーシュミットのごとく羽ばたいて…とまではいかないまでも

現物はとにかく鼻血出るほど格好が良い。

不思議なことに、ドレスアップして着けると一層エレガントでラグジュアリーに見える。うーん、不思議ね!

この腕時計も、マイスター制度の下、腕の良い職人さんが丁寧に作ってくれたんやろうなぁと妄想を膨らませ、悦に浸って今も眺めています。

この格好良さ…気絶。

児童虐待対応の効果を統計的に見てみる-サインズ・オブ・セーフティ・アプローチの有効性検証

児童虐待のニュースが複数取り上げられています。

虐待親の人格、児童相談所の対応のまずさ、色々な指摘があります。その指摘についてのコメントはここでは控えますが、大切なのは児童虐待防止のために今以上に良い方法はないかを、具体的に示していくことだと思います。

 

かつての児童虐待の対応って、虐待に対する注意喚起と、虐待ではない代替的な養育方法の提示など、わりと児童相談所が主体になって考え、親に提示するものが多かったのではないかと思います。

今の世の中も、児童虐待には強権的な介入の色が強まっています。もちろん、深刻な虐待ケースには強権的な介入は必須ですし、生易しい対話では子どもの安全が確保できないことなど珍しくはないです。

 

一方で、強権的な介入が必要でないケースってどんなものなのでしょうか。

一概には言えませんが、親が子育てに行き詰っていたり、夫婦間トラブルが根本にあったりと、一般家庭でも起こりうることの延長線上にあるような気はしてなりません(もちろん、そのような家庭でも強権的な介入が必要になる場面はあります)。そういった家庭に対しては、児童相談所が上から強権的な対応をするよりも、家庭とのパートナーシップのもとで望ましい養育方法・養育環境を構築していくことが求められるのではないかと思います。

 

そういった、家庭とのパートナーシップのもと、家庭主体で子どもの安全・安心を構築していく支援に、『サインズ・オブ・セーフティ・アプローチ』というものがあります。

 

サインズ・オブ・セーフティ・アプローチ(以下SofS)は、1990年代、西オーストラリア州に始まり、以後、世界的に広がりを見せている児童虐待対応ソーシャルワークの考え方です。児童相談所の介入の目的、児童相談所が心配している危機的状態、現在起きている危害、終結時の具体的な状態などを明確にし、家庭の持つ周辺資源を活用しながら子どもの安全を構築していくという考え方のもと作られているアプローチです。

 

某県の一部ではこのフレームワークが活用されつつあるのですが、一部での広まりに留まっていて、全体的な展開になるのが困難な様子が強いです。

その理由としてはやはり、(特に日本においては)効果がはっきりと検証されていないことがあげられるのではないでしょうか。

その有用性について、諸外国では組織的導入前後で、再虐待率、一時保護児童数、社会的養護下の児童数の減少等が報告されています。日本においてはどの程度の有効性があるのでしょうか。

 

・SofSの有効性の検証

SofSの有効性を検証するために、質問紙データ(極秘)を統計的に処理しました。具体的には簡単に説明すると、SofSを用いることで、子どもを一時保護する期間がどの程度変化するか、というものになります。一般的には一時保護は長引かせることは望ましくありませんから(短ければいいというものでもないのですが…)、この期間を1つの指標にしようと考えました。

統計ソフトはR-3.5.2を使用。

主な使用パッケージはRstan。

本分析はマルコフ連鎖モンテカルロ法(MCMC法)を用いたベイズ推定により母数推定を行いました。

 

一時保護日数については過去の児童相談所事業概要に掲載されているデータを参照可能であったため、平均値については平成28年度の全体の平均値である40.7、標準偏差は平成29年度におけるある児童相談所のデータを使用して62.1という値を使用し、事前分布として設定しました。

(※一時保護期間の性質上、極端に一時保護が長引くケース、つまり外れ値となるケースが複数想定される。そのため、それを想定した分布として平均値40.7、標準偏差62.1のcauchy分布を事前分布に設定した。)

 

仮説:サインズ・オブ・セイフティ・アプローチで用いられる各技法を使用することにより、一時保護日数が減少する。

 

・統計モデル

質問紙で採集した以下の項目

y:一時保護日数 / ds:デンジャーステイトメントを作った / sg:セイフティゴールを作った / ssc:セイフティスケールを作った / sfa:ソリューションな質問を用いた

に加え、切片β1、個人の効果rと場所(児童相談所)の効果qも加えたモデルを作成し、各変数がy:保護日数にどのように影響を与えるかを検討する。

単純なモデルとして、仮に一時保護日数をmuと置くと、

 mu=β1+β2ds+β3sg+β4ssc+β5sfa+r+q  の線形モデルが作られる。

まず、muは平均値40.7、標準偏差62.1の線形モデルの分布として

mu ~ normal(40.7,62.1)  を設定した。

 

次に、場所の効果について検討しました。

児童相談所によって一時保護日数の違いがあるかは、児童相談所事業概要より標準偏差を算出することにより把握が可能です。また、分布については正規分布を想定しました。

以上により、場所の効果qは

q ~ normal (0,10.2)  としました。

個人の効果rについては平均0、標準偏差σの正規分布

r ~ normal(0,σ)  としました。

一時保護日数yは、前述の外れ値の多さ等により、muの線形モデルを使用したコーシー分布

Y ~ cauchy(mu,σ)  と想定されます。

 

以上により、これまで出された統計モデルを整理すると、

mu = b1 + b2*ds + b3*sg + b4*ssc+ b5*sfa + q + r

q ~ normal(0,10.2)

r ~ normal(0,σ)

mu ~ normal(40.7,62.1)

Y ~ cauchy(mu[n],σ)

となり、このモデルを用いて一時保護日数についての階層ベイズモデルを求めました。

 

 

・SofSで用いられる各技法を使用することにより、一時保護日数が減少するかを検討した結果を以下に示します。

得られたデータをもとに、指標とする技法をデンジャーステイトメントを作った(ds)、セイフティゴール(sg)を作った、セイフティスケールを作った(ssc)、ソリューションな質問を用いた(sfa)、の4つに絞り、階層ベイズモデルによる分析を行いました。

結果は、一時保護日数減少に寄与するのはデンジャーステイトメントの作成であることが示されました。

f:id:romancingsame:20190629154118g:plain

SofS仮説

 

・今後の課題

「一時保護日数の減少」はアプローチの効果があった結果とみなすかは議論の余地あります。家族がじっくり考える時間ができた結果、一時保護期間が長くなるというケースも現実にあり、有効性の指標に用いて良いのかは現在のところ結論は出ていません。

ですが、本研究ではあくまでも一時保護期間の変化があるか、一時保護期間に当アプローチが影響を及ぼしたかという観点でみており、有効性という観点での議論は今後の課題となると思われます。

また、ケース個々の状況に左右されやすく分散の大きい一時保護日数ではなく、面接回数や、ケース全体を分母にした再受理・措置の比率を指標とすることも今後は検討すべきだと思いましたので、次回、さらにその次と進めていければと思います。

分析については、階層ベイズモデルの中に事前分布を設定する際、この方法で正しいのか微妙な感じです。そもそも、muなんてものを置かずに、そのままYの中に事前分布を置いて分析したらよかったんじゃないかと今更になって思いましたが、正直よくわかんないので今度時間があるときにちゃんと勉強し直します。

最近統計関係の勉強が追い付いていないので焦る日々。

 

さて、このように児童虐待対応について、統計手法を用いて一定の結果を算出しました。

SofSが万能だとは思いませんが、家族主体かつ家族にとって理解しやすい関りになりやすいという点では、児童相談所が上から目線の押し付けケースワークにならないためにも非常に有効なのではと思います。一方で、あまりに遠距離射撃型なフォーマットであるため、家族と向き合いながら対話する感覚がイマイチ得られ難い方法だなと感じることもあります。

家族の間合いに飛び込み向き合いながら、こういったフレームワークをうまく活用していくことで、昨今問題になっている児童虐待対応を一歩進めることができるのではないでしょうか。

 

・オマケ

使用したStanコードは以下の通り。

stancode <- "

data {

  int N;

  int<lower=0, upper=1> ds[N];

  int<lower=0, upper=1> sg[N];

  int<lower=0, upper=1> ssc[N];

  int<lower=0, upper=1> sfa[N];

  real<lower=0> Y[N];

}

 

parameters {

  real b1;

  real b2;

  real b3;

  real b4;

  real b5;

  real q[N];//場所差

  real r[N];//個体差

  real<lower=0> sigma;

  real<lower=0> sigma2;

}

 

transformed parameters {

  real mu[N];

  for (n in 1:N)

    mu[n] = b1 + b2*ds[n] + b3*sg[n] + b4*ssc[n] + b5*sfa[n] + q[n] + r[n];

}

 

model {

  for (n in 1:N)

    q[n] ~ normal(0,10.2);

  for (n in 1:N)    r[n] ~ normal(0,sigma2);

  for (n in 1:N)    mu[n] ~ normal(40,61);

  for (n in 1:N)

    Y[n] ~ cauchy(mu[n], sigma);

}

 

generated quantities{ //新たにサンプリングする変数を作る

    vector[T] log_lik;

    for(t in 1:T){

    //モデル1の対数尤度

      log_lik[t] = normal_lpdf(Y|mu,s_Y);

 }

"

Olde Homesteader(オールドホームステッダー)のアンダーシャツ

f:id:romancingsame:20190526201900j:plain

部屋着がラグジュアリーだと人生はラグジュアリーに。
自分が敬愛する某H先生がなんとなく言ってそうな名言です。

仕事はとても大変で、精神的にとても落ちてしまうことだって人間誰しもありますよね。
でもそんな時にこの服に身を通せばすぐに気持ちがラグジュアリーになる。…不思議ね!!

そんなラグジュアリーなアンダーシャツの名こそ、Olde Homesteader(オールドホームステッダー)。
何度かお邪魔させていただいている某店でリピート買いしてしまいました。
この着心地…気絶。
https://oldehomesteader.jp/

はじめてこのブログをご覧になる方へ

このブログでは、児童虐待関係の仕事をしているブログ主が、心理学とか心理学研究における統計解析の話などをします。

 

児童虐待領域記事(リンク無しは未発表)

A.虐待の影響

 1.虐待の影響(全般)
 2.内的作業モデル
 3.被虐待児の攻撃性
 4.敵意帰属バイアス
 5.感情調節障害
 6.自傷行為

B.脳

 1.虐待の脳への影響
 2.脳容積と虐待
 3.脳と攻撃性

C.精神医学的診断

 1.ASD(自閉スペクトラム症)1-2.ASDの感情調節障害
 2.ADHD(注意欠陥多動症)
 3.RAD(反応性アタッチメント障害)
 4.DSED(脱抑制型対人交流障害)
 5.C-PTSD(複雑性PTSD)
 6.社会的(語用論的)コミュニケーション症

D.不適応行動・状態

 1.窃盗
 2.過剰適応
 3.性加害
 4.攻撃性全般

E.ケア

 1.実親との面会交流
 2.感情のラベリング
 3.トラウマケア・プレイセラピー

F.虐待関連

 1.児童虐待による死亡(CMF)
 2.子どもの虐待証言(性的虐待順応症候群と絡めて)
 3.虐待加害リスク

G.基礎心理概念

 1.抽象化思考

 

以下カテゴリ

心理ー基礎心理学系⇒心理学の基礎的な話など

   アセスメント⇒架空事例などを用いたアセスメント例など

   児童虐待関係児童虐待にかかわる話など

統計ー基礎心理統計⇒心理統計の基礎的な話など

   時系列解析系⇒時系列データを用いた分析例など

   ベイズ統計系ベイズ統計やそれを用いた分析例など

 

ブログの内容は個人の意見等の表明であり、所属組織の意見・見解を示すものではありません。またブログ内容の正確性については保証しかねます(誤記載等はコメント欄等でお知らせいただけると嬉しいです)。

 

Twitter@yui_sggk

 

内的作業モデル―虐待により傷付いた対人表象のモデル

内的作業モデル(IWM)とは、こういう虐待対応の世界ではよく活用する概念です。ボウルビィが提唱した、乳幼児期の親子関係の中で形成される対人表象についてのモデル。

要は、私は〇〇したら~~してもらえる、××な時は~~ってなる、の積み重ねで、単純には対人関係の応答についての基本的なモデルみたいなイメージでいいと思います。

 

IWMの関係不安が高いほど,喜び・悲しみ・怒りの各表情における誤検出量が多くなるとか、IWMの機能に関する研究は多くはないけどちょくちょく見かけます。

しかし、被虐待児のアセスメントの現場ではやはり、①愛着対象からどのようなかかわり方を受け、②愛着行動に対してどのような応答をされていて、③その結果どのような対人表象つまりIWMが形成されていった可能性があるか、この3点を整理し、現在の行動傾向にどう寄与しているかを把握する必要があります。

 

愛着行動ってよく誤解されがちですが、基本的には不安や不快感の低減を目的としてとる行動のことです。

例えば、母親にだっこされると不安感が低減する、と学習するから、寂しいとか怖いとかの不快感があると母親を求めるというものです。この場合、母親への接近が愛着行動に該当します。

他に、腹が減って泣くのも空腹という不快感を、泣きにより母親が察知して母乳や離乳食を与えてくれ、空腹感という不快感が低減すると学習するから泣くのです。この場合、泣いて母親を呼ぶことが愛着行動に該当します。※ここでは、不快感の行動化としての泣きとは区別して考えています。

 

愛着行動でポピュラーなものに前述の「泣き」があります。

空腹時、恐怖時に子どもが「泣き」を発したとして、次の2点が簡単には考えられます。

1:母親がすぐ接近して前述の不快感を低減してくれる。

2:母親は無反応、もしくは「うるさい」と怒鳴りつける。

1の場合は特に問題なく、健全な愛着関係が育まれることが期待でき、IWMも「不快感を表明したらそれを母親が低減してくれる、精神状態を守ってくれる」と肯定的に構築されます。

一方で2の場合はどうでしょうか。不快感は表明しても低減されないことを学習し続けると、嫌なことや悩みを他者に言えない子どもに成長してしまうかもしれません。または、不快感をより大きな不快感(怒鳴られる恐怖)などで押さえつけられると、不快感をただひたすら恐怖を伴いながらため込み続けるようになり、限界を超えたときに大爆発させるようになるかもしれませんし、その大爆発で不快感が低減されたと誤学習してしまったら、不快感を感じた時に行動化による発散が定着する、いわゆる不適応行動が定着するようになってしまうかもしれません。

不適応行動のアセスメントを行う際に、安易な対応で済まさず、こういった成育歴の整理によるIWMをベースにしたアセスメントを詰めていくことは極めて重要になります。

 

かなり単純化して話しましたが、心理学概論での基礎知識も、こうやって現場で活きることはたくさんあるので、概論・基礎心理系の勉強って大事だなと思います。